适用轨距1435mm
动力形式内燃或电动
牵引吨位5000
行走方式公路铁轨两用
车钩形式铁路货箱标准车钩
供货周期根据车型及下单顺序
厂家供应轨道机车,公铁两用牵引车所标注的吨位越大那么它的牵引能力就越强,例如QY3000吨公铁两用牵引车采用四轮驱动方式,能够在平直干燥的线路上完成3000吨以下任意吨位的牵引车工作,因此客户需要根据自己所牵引的重量自行选择所需要的机型。
铁路线路为正线、站线、段管线、岔线及特别用途线,见上图所示。正线连接车站并贯穿或直股伸入车站的线路(或者说,直接与区间连通的线路)。正线可以为区间正线和站内正线,连接车站的部为区间正线,贯穿或直股伸入车站的部为站内正线(一般供列车通过之用)。站线到发线:供旅客列车和货物列车到发的线;调车线和牵出线:专为车列的解体、编组使用的线路;货物线:货物装卸所使用的线路;其它线:办理其他各种作业的线路,如机走线、机待线、迂回线、禁溜线、加冰线、整备线等。
用途线为保证行车安全而设置的安全线、避难线。段管线由机务段、电务段、车辆段、工务段等并管辖的线路。岔线在区间或站内与铁路接轨,通往路内外单位(厂矿企业、砂石场、港湾、码头、货物仓库)的线路。岔线直接为厂矿企业服务。有的岔线连接大的厂矿,为了取送车的方便,也设了车站,车站间还需要办理闭塞。
但这些车站不办理铁路营业业务,仅为取送车服务,均不算入营业车站。股道编号为了作业和维修管理上的方便,站内线路和道岔应有统一的编号。站内正线规定用罗马数字编号(Ⅰ、Ⅱ……),站线用数字编号3……)。在单线铁路上,应当从站舍一侧开始顺序编号;位于站舍左、右或后方的线路,在站舍前的线路编完后,再由正线方向起,向远离正线顺序编号,如下图所示。
客运电力机车。用来牵引各种速度等级的客运列车,其特点是速度较高,所需牵引力较小。货运电力机车。用来牵引货物列车,其特点是载荷大,牵引力大,但速度较低。客货通用电力机车。尤其是近年来新型电力机车中,其恒功运行速度范围大,可适用牵引客运列车,也可适用牵引货运列车。按轮对驱动型式:个别驱动电力机车指每一轮对是由单的一台牵引电动机驱动的电力机车。
组合驱动电力机车指几个轮对用机械方式互相连接成组,共同由一台牵引电动机驱动的电力机车。现代电力机车大都采用个别驱动方式,而很少再采用组合驱动。按电流制类在铁道干线电力牵引中,电力机车主要按照供电电流制为直流制电力机车、流制电力机车和多流制电力机车。直流制电力机车:即直流电力机车,它是由直流电网供电,采用直流牵引电机驱动的电力机车。
流制电力机车:可为单相低频(25Hz或162/3Hz)电力机车和单相工频(50Hz)电力机车。直传动电力机车:是由接触网引人单相工频流电经机车内的变流装置供给直(脉)流牵引电动机来驱动的机车。流传动电力机车:是由接触网引人单相工频流电经机车内的变流装置供给流(同步或异步)牵引电动机来驱动的机车。
多流制电力机车:这种机车可以同时适用直流制、流制在不同的频率、不同电压下工作。这是由于有些或相邻联运时存在着不同电力牵引供电网形成的,以西欧居多。车主电路SS3B是直流电传动的单相工频流电力机车,机车主电路与韶山3型4000系电力机车基本相同。接触网导线上的25千伏单相工频流电电流,经过受电弓进入机车后,再经过主断路器再进入主变压器,流电从主变压器的牵引绕组经过晶闸管整流后,向台两组并联的牵引电动机集中供应直流电,使牵引电动机产生转矩,将电能转变成机械能,经过齿轮的传递驱动轮对。
向架机车走行部为两全相同的轴不等轴距转向架,与韶山3型4000系机车相同。一系悬采用轴箱螺旋钢弹簧与弹性定位拉杆悬结构,二系悬采用橡胶堆全旁承承载;牵引力和制动力通过平行拉杆牵引装置传递,牵引点高度距轨面460毫米。每台转向架装用台带有补偿绕组、四、高电压的ZQ800-1型串励脉流牵引电动机,小时功率为800千瓦,持续功率720千瓦,额定电压为1550伏。
牵引电机采取抱轴式悬、双侧刚性斜齿传动方式。基础制动采用单元制动器。制系统韶山3B型电力机车控制电路采用了逻辑控制单元(LCU)和微机柜和网络控制技术,取代了韶山3型电力机车的模拟控制系统。机车增加了采用基于列车通信网络(TCN)国际标准的网络控制系统,机车控制采用布式微机控制系统,由列车总线和车辆总线两级网络构成,将控制单元(CCU)、牵引控制单元(TCU)、彩色液晶显示屏(IDU)、机车综合检测装置(TAX、逻辑控制单元和制动逻辑控制装置(DKL)通过车辆总线(MVB)连成一体,并通过列车总线(WTB)将两节机车的信息换连接起来。
牵引电动机及牵引齿轮的工作条件差。来自钢轨的冲击直接传至牵引电动机和牵引齿轮啮合面,牵引电动机垂向加速度大,牵引齿轮啮合面的接触动应力大,影响它们的工作可靠性及使用寿命。因此,随着机车速度的提高,牵引电动机半悬不再适应要求而要采用牵引电动机全悬。一般情况下,机车大运用速度不**过120km可以采用牵引电动机半悬。
牵引电动机抱轴承的技术状态对驱动装置的工作有重大影响。抱轴承过去都采用滑动轴承,滑动抱轴承与车轴之间径向间隙较大,且随着机车走行里程的增加,滑动抱轴承的间隙,大小牵引齿轮的中心距发生变化,齿轮啮合条件恶化,抱轴承间隙,使牵引电动机电枢轴与车轴不平行度,也使齿轮啮合条件恶化,影响齿轮的使用寿命。
因此严格注意抱轴承的润滑与维护,保证轴承间隙不**限。滑动抱轴承在速度较高的情况下磨损,且容易发热而引起烧瓦事故。滑动抱轴承缺点是:运用可靠性差,维修工作量大,维修费用高,牵引齿轮副的啮合条件差,影响齿轮使用寿命。近些年来,一些机车采用滚动抱轴承。与滑动抱轴承相比,滚动抱轴承的优点为滚动轴承工作可靠,维修工作小,而且减小了抱轴承的径向间隙,改善牵引齿轮的啮合条件,延长牵引齿轮的使用寿命。
弹性轴悬式的动力学性能及其结构复杂性介于刚性轴悬式与架悬式之间,适用于是大速度为120km/h~160km/h的机车。车体悬定义这种悬方式通常是把牵引电动机悬在车体的底部,使其成为二系弹簧以上的质量。这样一来,转向架构架的质量及回转惯性矩就大为减小,容易保持转向架高速时的蛇形稳定性,对减轻轮轨的垂向及横向动载荷也有所帮助。
对于时速**过200km的动力集中型高速动车组,动力车置于列车两端,中间为拖车,要求动力车具有很大的功率,其牵引电动机车较大,如果采用架悬式,则转向架构架质量增加很多,簧间质量(构架质量位于一二系之间,称为簧间质量)过大,对机车动力学性能、特别是对转向架的蛇行稳定性不利,须设法减小。为此,把牵引电动机在车体底部,使牵引电动机成为二系悬之上的车体质量,谓之体悬式,也属于全悬。
此时,牵引电动机电枢轴输出的力矩经减速装置传到轮对上产生牵引力,该驱动装置要适应车体与轮对之间各方向的相对位移,该相对位移比架悬式驱动装置要求的相对位移量要大得多。体悬式牵引电动机的驱动机构为复杂,只有必要时才采用体悬式。结构工作原理牵引电动机悬在车体上,其输出扭矩通过齿轮箱(装在车体上)、万向轴、小齿轮、大齿轮传至轮对。
铁道机车车辆液压制动机及其发展,列车运行速度越高,对车辆设备小型化、轻量化及制动系统的性能及可靠性要求越高。采用液压制动机来代替传统的空气制动机,可以在确保具有与空气制动装置相同可靠性的条件下实现小型化、轻型化,同时由于液压系统具有速响应的特点,可取消防滑器,并比空气制动系统具有更好的防滑性能。
为了适应高速机车车辆以及城市轨道通车辆整体技术的发展,上许多都对液压制动方式进行了研究,成为铁路机车车辆制动技术发展的趋势之目前,随着计算机技术、机电和自动控制技术、现代制造技术及新材料、新工艺等一系列**的蓬勃发展,液压技术有了很大的发展。密封材料性能的提高、液压件微型化以及高可靠性和适用性等,都给机车车辆制动系统采用液压技术创造了条件。
1液压制动的组成及基本原理液压制动系统一般是由油泵,蓄能器,电磁控制阀以及基础制动装置等部件组成。可以看出,整个液压制动系统按照功能来,可以为微机制动控制器(MBCU)、电液制动装置及基础制动装置。微机制动控制器(MBCU)的工作原理与空气制动机基本相似,以接收常用制动指令、紧急制动指令、电气制动反馈、ATC信号等输入,经过计算机处理,输出常用制动指令、紧急制动指令来控制相应电磁阀,完成制动力的控制。
除此之外,它还要控制液压系统的驱动和控制,如油泵的起停控制,以及整个液压系统的状态检测等,如液压系统的各种传感器反馈信息。电液制动装置由电机、油泵、蓄能器、常用制动压力控制、紧急制动压力控制和油箱组成。各部工作原理如下。电机、油泵及蓄能器电机、油泵将电能转变为液压能源,给整个制动系统提供制动能量。
电力机车主要**械部、电气部、空气管路部组成。 电气部:主要由受电弓、主断路器、主变流器、牵引电动机、流装置、平波电抗器、司机控制机器组成。机械部:包括车体、转向架、车体与转向架的连接装置、牵引缓冲装置。 空气管路部:包括风源系统、制动管路系统、控制管路系统、管路。
http://zgfcj448.b2b168.com