适用轨距1435mm
动力形式内燃或电动
牵引吨位5000
行走方式公路铁轨两用
车钩形式铁路货箱标准车钩
供货周期根据车型及下单顺序
公铁两用牵引车是一款牵引、调车、起重、装卸、除雪、清扫、检修、抢险等于一体的多功能车辆,随着我国公路和高速铁路的建设高速发展,公路铁路两用牵引车也越来越受到交通建设者们的认同和青睐,并广泛实用于冶金行业、电厂、化工行业、港口、地方铁路、仓库的调车作业及车辆运行的牵引动力中。
电力机车在流制中,上大多数都采用工频(50Hz)流制,或25Hz低频流制。在这种供电制下,牵引变电所将相流电改变成25kV工业频率单相流串励电动机,把流电变成直流电的任务因机车上完成。由于接触网电压比直流制时提高了很多,接触导线的直径可以相对减小,减少了有色金属的消耗和建设。因此,工频流制得到了广泛采用,上绝大多数电力机车也是—直流电力机车。
—直—电力机车采用直流串励电动机的大优点是调速简单,只要改变电动机的端电压,就能很方便地在较大范围内实现对机车的调速。但是这种电机由于带有整流子,使制造和维修很复杂,体积也较大。而流无0整流子牵引电动机(即相异步电动机)在制造、性能、功能、体积、重量、成本、及可靠性等方面远比整流子电机得多。它之所以迟迟不能在电力机车上应用,主要原因是调速比较困难。
改变端电压不能使这种电机在较大范围内改变速度,而只有改变电流的频率才能达到目的。因此,只有当电子技术和大功率晶闸管变流装置得到迅速发展的今天,才能生产出采用相流电机的电力机车。—直—电力机车从接触网上引入的仍然是单相流电,它先把单相流电整流成直流电,然后再把直流电逆变成可以使频率变化的相流电供相异步电动机使用。
电力机车的电气线路按其功能和作用的不同,为主电路、电路及控制电路大系统:主电路是特产生机车牵引力和制动力的各有关电气设备,按设计要求在电的方面连接成一个立的电系统,以实现机车的功率传输,将接触网汲取的电能转变成牵引列车的机械能。电力机车主电路的电气设备主要包括受电弓、主断路器、牵引变压器、整流装置、平波电抗器、制动电阻和牵引电动机等。
主电路是电力机车的高电压、大电流动力回路。电路是将机车上为主电路电气设备服务的各种电气设备和电源,按设计要求在电的方面连接戊一个立的电系统,以确保主电路正常工作。电气设备包括:作为机车气源的空气压缩机,冷却牵引电动机、整流装置、乎被电抗器以及牵引变压器的通风机组,强迫变压器油循环用的潜油泵等。
实际上,电路就是给上述机组的拖动电机提供电源的电气线路。由于机车机纽的拖动电机采用了相异步电动机,而机车电源为单相,通常是由牵引变压器低压侧的绕组提供单相流电源。然后再由劈相机将单相流电转换成相流电。为了改善乘务人员的工作与生活条件,电路内还有取暖、热饭、降温等设备。按电压等级为380V和220V。
控制电路是将控制机车主电路和电路中各种电气设备的控制电器同控制电源以及照明、信号显示等装置,按设计要求在电的方面连接成一个立的电系统,以实现对整台机车的操纵和控制。控制电路是电力机车的低电压、小电流回路。其中有触点控制电路包括司机控制器、各种控制开关、接触器、继电器、电空阀等;无触点控制电路则包括机车上的微机、信号、通信、故障显示等各种电子设备电路。
电力机车由机械部(包括车体和转向架)、电气部和空气管路系统构成。车体是电力机车的骨架,是由钢板和压型梁组焊成的复杂的空间结构,电力机车大部机械及电气设备都安装在车体内,它也是机车乘务员的工作场所。转向架是由牵引电机把电能转变成机械能,便电力机车沿轨道走行的机械装置。它的上部支持着车体,它的下部轮对与铁路轨道接触。
电气部包括机车主电路、电路和控制电路形成的全部电气设备,在机车上占的比重大,除安装在转向架中的牵引电机之外,其余均安装在车顶、车内、车下和司机室内。空气管路系统主要执行机车空气制动功能,由空气压缩机、气阀柜、制动机和管路等组成。新型电力机车的设计都遵循了简统化、系列化工作的原则,完全按标准化进行。
这对于我们了解和析不同型式的新型电力机车提供了方便。电力机车简统化、系列化工作原则的主要内容为:主电路标准化设计。采用两种整流电路形式;——两段桥、再生制动,牵引无级磁场削弱;——段不对称半控桥,加馈电阻制动,牵引级磁场削弱。统一牵引电机电压等级,不同轴式采用积木式组合,货运机车牵引电机功率800kW,电压1000V左右,6机,半悬,滚动抱轴承,单边刚性齿轮传动;货运机车采用机车功率因数补偿装置;统一装备有防空转、防滑行系统;统一装备有特性控制系统;采用标准电压、电流等级的主电路各类电器设备。
近几年,在铁路机车车辆出现的重大事故内,通事故所占据的比例较高。通工具作为机械设备,作为人们出行媒介,与便捷及舒适相比较,人们对该媒介安全可靠因素更加关注。铁路机车可靠性,也逐渐成为铁路在通行业内竞争主要手段。铁路客运在发展过程中,多次表示降低销售价格,提高运行速度,是铁路客运主要竞争力,铁路客运速度在提升之后,就面对速度提升所带来的安全风险。
铁路机车车辆在结构越加复杂情况下,铁路机车车辆出现故障可能性显著提升,铁路机车车辆结果虽然目前并未造成严重损失,但是要是对铁路机车车辆故障没有给与应有重视,一旦出现故障,所造成的后果将无法估计。因此,铁路客运在提高机车车辆行驶速度,优化服务质量情况下,还需要有效提高铁路机车车辆可靠性。铁路机车车辆在城市内行驶过程中,也需要得到应有重视,主要原因由于城市内人口基数较大,乘客数量较多,一旦出现安全事故,对乘客人身安全造成严重影响。
因此,在提高铁路机车车辆安全性能情况下,还需要对城市市区内情况进行了解。2铁路机车车辆可靠性理论及应用铁路机车车辆运用可靠性和铁路机车车辆运营质量、效率成本等因素之间有着直接性关联。铁路运输想要在竞争激烈的通市场内占有一席之地,就需要不断提高铁路机车车辆运输可靠性,这样才能够获取乘客关注。
铁路机车车辆结构在越加复杂情况下,怎样提高铁路机车车辆运用可靠性就成为急需解决的问题。可靠性并不表示产品工作性能丧失。可靠性所涉及到的范围十广泛,属于系统性工程,能够为产品制造提供依据,研究人员在对新技术研究过程中也具有可靠性作为保证。可靠性主要对对机车故障来源进行研究,铁路机车车辆与人们人身安全之间有着紧密关联,所以需要提高对可靠性关联关注程度。
内燃机车的原动机一般都是柴油机,从柴油机曲轴到机车动轮(轮对)之间,需要一套速比可变的中间环节,这一中间环节称为传动装置。内燃机车的传动装置有电力传动、液力传动和机械传动种,电力传动又为直-直流电力传动、-直流电力传动、-直-流电力传动和-电力传动
http://zgfcj448.b2b168.com