类型ZF电控变速箱
包装木箱包装
适用对象装载机
发货地山东临沂
发货方式物流托运
供货周期根据车型及下单情况
供应山工30装载机变速箱和50装载机,铲车变速箱和变矩器可以是分离的,也可是集成的,由总体布置情况选择。目前,装载机多采用前后的行星式动力换挡变速器和双涡轮变矩器。双涡轮的动力需采用追赶离合器自动合成输出。
自动变速器(也称AT)的应用使汽车的操纵更为简便。不过许多人将其与无级变速器概念混淆。其实,现在使用的自动变速器绝大多数还是根据车速和发动机负荷情况自动变换挡位的有级变速器。由于许多用户对自动变速器的结构和工作方式不太了解,在使用中难免会有不当之处,也就必然会引发一些自动变速器的故障。在这里**鹰跟大家讲讲使用自动变速器时,应该注意的几个问题。
换挡时机自动变速器的换挡时机是非常重要的。何时准确换挡主要取决于车速和发动机负荷。发动机油门开度较大时,发动机负荷较大,变速器处于较低挡位。相同车速下,发动机油门开度较小时,发动机负荷较小,变速器可处于较高挡位。因此可以运用油门的变化在一定程度上控制换挡时机。
如果希望保持较好的加速性能,可以始终保持较大的油门开度,自动变速器会在较高车速时升入较高挡位,如果希望平稳行驶时,可以在适当时候轻抬油门踏板,变速器就会自动升挡。使发动机在相同车速时保持较低转速,可获得较好的经济性和宁静的驾驶感觉。这时再轻踏油门踏板继续加速,变速器不会马上退回原挡位,这是设计者为防止频繁换挡而设计的提前升挡,滞后降挡功能。车辆起步驾驶装备自动变速器的车辆起步后明白了这个道理就可以随心所欲地享受自动变速器带来的驾驶乐趣了。
全负荷开关装有自动变速器的车辆还普遍设置了全负荷开关。当油门踏板踩到底时,就会触动此开关,使车辆在高速行驶时,变速器会马上强制降1个挡,使车辆在需要短距离加速**车时,能够获得良好的加速性。这是由自动变速器本身设计决定的。
车辆下坡由于单向离合器在自动变速器中的应用,不是所有挡位都能像手动变速器一样,能在下坡时利用发动机产生的反拖作用来控制车辆的下坡滑行速度,所以只有把自动变速器的操纵杆根据车速挂到1的限制挡位上,才能实现利用发动机反拖作用,来控制车辆下坡的滑行速度。

自动变速液力变矩器的锁止机构原理由于液力变矩器的泵轮和涡轮之间存在着转速差和液力损失,其效率不如普通机械式变速器高,为提高液力变矩器在高转速比工况下的效率及汽车正常行驶时的燃油经济性,绝大部分液力变矩器增设了锁止机构,使变矩器输入轴与输出轴刚性连接,传动效率。其类型主要有由锁止离合器锁止的液力变矩器,由离心式离合器锁止的液力变矩器和由行星齿轮机构锁止的液力变矩器。
以锁止离合器作为锁止机构常见,其结构见图1—所示。锁止离合器的从动盘安装在涡轱轮毂花键上,主动部分压盘(包括传力盘和活塞)与泵轮固连。如果压力油经油道进入恬塞左腔室,推动压盘右移压紧从动盘,离合器结合,泵轮与涡轮固连在一起,于是变矩器的输入轴与输出轴刚性连接。当活塞左腔室油压被卸除后,主,从动部分分离,锁止离合器解除锁止状态,变矩器恢复正常液力传动。当锁止高合器结合时,单向离合器脱开。由锁止离合器锁止的液力变矩器在带有锁止机构的液力变矩器中导轮可在油液中自由旋转。
随涡轮一起旋转。涡轮轴上有内,外两条压力油道,当压力油从内油道进入传力盘左腔而经外油道排出时,离合器处于分离状态。当压力油经涡轮轴外油道进入传力盘右腔而内油道排出时,传力盘总成被压向变矩器壳,传力盘上摩擦材料与变矩器壳接触并逐渐压紧,涡轮与变矩器壳即泵轮连接成一体。可见,这种锁止离合器的工作由压力油的流向控制。田2—13是带有锁止离合器的液力变矩器的另一种常见结构。带有摩擦材料的传力盘总成与涡轮相连。
粘性离合器也是锁止离合器的一种类型,由转子,离合器盖,壳体和油封组成。硅酮液被封在离合器盖和壳体之间,可以缓和离合器结合时的冲击。当离合器锁止时,转矩由壳体传递给离合器盖,再经硅酮液传递给转子,带动涡轮轮毂旋转。

动力中断等换挡的平稳性,使驾驶更加舒适,减少传动系的动载荷,增加零件的使用寿命,减少离合器摩擦片热负荷,提高离合器的工作可靠性和耐用性。换挡过程中通常是结合元件结合,另一个结合元件分离。如果这两个结合元件分离和结合的时间不当,则会造成换挡不平稳,搭接过早会造成动力干涉,过晚会产生动力中断。换挡过程中作用在结合元件上的油压决定了结合元件所传递的转矩限。控制油压的适当变化能够起到减小输出轴转矩的波动。换挡过程控制策略AMT是通过电控液压操作换挡离合器或制动器来进行换挡操纵的。换挡时会产生换挡冲击减小结合元件磨损等作用。换挡的控制即是对结合元件在换挡过程中的动作搭接时序,油压变化规律和发动机转矩的控制。发动机转矩的控制。发动机转矩的控制通常采用节气门控制,点火延迟和切断燃油供给等方法,目的是降低换档期间传动系统的转矩减少冲击。结合元件在换挡过程中的动作搭接时序和油压变化规律是影响换挡品质的主要因素,。
换挡过程具有较为严格的时序关系,需要进行逻辑控制,另一方面需要通过协调控制发动机,离合器及变速箱等一系列操作对换挡性能进行控制。3.1 换挡过程AMT为非动力换挡,换挡时需要切断动力,档位变换完成后,再恢复动力。如果能实现发动机和离合器扭矩的协调控制,将发动机减少供油和分离离合器合并为一个阶段,将发动机恢复供油和结合离合器合并为一个阶段。AMT换挡过程控制包括鲁两个方面的内容那么换挡过程可以按下面逐步进行的4个阶段换挡过程实现上换挡或下换挡。
同时控制发动机的供油(采用节气门控制的方式)来避免由于负荷的突然降低而导致发动机转速的急剧上升。换挡时,先将发动机的节气门调至怠速,再断开离合器,这样,将离合器传递的扭矩降低至零,就不会因为扭矩的突然中断而造成传动系的震荡和车辆冲击。如果节气门回怠速与断开离合器分别各自立地同时进行,由于节气门回怠速后发动机动力降低的滞后反应,将造成离合器分离后发动机转速的上升。3.1.1中断动力AMT的换挡操纵分离离合器以中断发动机和传动系之间的动力传递不利于后期挂挡后离合器主从动部分的同步,使同步时间加长。

发动机与液力变矩器共同工作的输入特性定义发动机与液力变矩器共同工作的输入特性是指液力变矩器不同传动比时,变矩器与发动机共同工作的转矩和转速的变化特性。它是研究发动机与液力变矩器匹配的基础,也是研究发动机与液力变矩器共同工作输出特性的基础。
共同工作输入特性的确定要下列已知条件:液力变矩器的原始特性及发动机的净转矩外特性。工作液体的密度和液力变矩器的有效直径。定步骤:在液力变矩器的原始特性曲线图上,给定若干液力变矩器的工况(即转速比)。对于普通的单级液力变矩器,可选择起动工况,区的转速比(等于75—80%) 和,率工况和大转速比工况(空载工况) 等。对综合式液力变矩器应增加液力变矩器转入偶合器工作时的转速比。
根据给定的转速比,由液力变矩器原始特性曲线的转矩系数曲线分别定出转矩系数值,和等。为了作图,可以根据需要增加转速比的数目,并确定相应的的数值。根据所确定的不同时的转矩系数值及液力变矩器的有效直应用液力变矩器泵轮的转矩计算公式,计算并绘制液力变矩器泵轮的负荷抛物线。当工作液体选定后,为已知的数值。因此,在某个时,均为常数,于是可写为。
式中,是一个随不同而变化的系数。当随的变化规律不同时,即液力变矩器的透穿性不同时,将得到一条或一组负荷抛物线。将发动机的净转矩外特性与液力变矩器的负荷抛物线,以相同的坐标比例绘制在一起,即得发动机与液力变矩器共同工作的输入特性。
发动机与变矩器共同工作输入特性匹配分析共同工作的稳**负荷抛物线与发动机转矩外特性的一系列交点就是大油门开度时,发动机与液力变矩器共同工作的稳**。其对应的转速和转矩为共同工作时发动机与泵轮轴的转速和传递的转矩。
共同工作的范围由小转矩系数和大转矩系数所确定的两条负荷抛物线所截取的转矩外特性的曲线部分,即为处于发动机外特性下工作,两者共同工作的范围。由小转矩系数和大转矩系数所确定的两条负荷抛物线与转矩部分特性的交点所确定的曲线范围,为在发动机部分供油时,发动机与液力变矩器共同工作的范围。
装载机变速箱变矩器的工作原理:变矩器的工作原理是与发动机直接连接的变矩器泵轮旋转,搅动变矩器中的传动油按照一定的规律运动,在液力变矩器中间有个固定的导轮,当液体通过导轮时,经过各种复杂的变化,冲击到输出涡轮上,带动涡轮旋转,来达到提升扭矩的作用,当在扭矩提升的过程中,涡轮的输出转速会降低。
http://zgfcj448.b2b168.com